
CS103 Handout 09
Fall 2012 October 19, 2012

Problem Set 4

This fourth problem set explores propositional and first-order logic, along with its applications.
Once you've completed it, you should have a much stronger understanding of mathematical logic
and its properties.

In any question that asks for a proof, you must provide a rigorous mathematical proof. You
cannot draw a picture or argue by intuition. If we specify that a proof must be done a certain way,
you must use that particular proof technique; otherwise you may prove the result however you
wish.

As always, please feel free to drop by office hours or send us emails if you have any questions.
We'd be happy to help out.

This problem set has 150 possible points. It is weighted at 7% of your total grade. The earlier
questions serve as a warm-up for the later problems, so be aware that the difficulty of the
problems does increase over the course of this problem set.

Good luck, and have fun!

Checkpoint due Monday, October 22 at 2:15PM

Assignment due Friday, October 26 at 2:15PM

Write your solutions to the following problems and submit them by Monday, October 22nd at the start of
class. These problems will be graded based on whether or not you submit solutions, rather than the
correctness of your solutions. We will try to get these problems returned to you with feedback on your
proof style this Wednesday, October 24th. Submission instructions are on the last page of this problem
set.

Note that this question has two parts.

Checkpoint Problem: Translating into Logic, Part I (25 Points if Submitted)

In each of the following, you will be given a list of first-order predicates and functions along with an
English sentence. In each case, write a statement in first-order logic that expresses the indicated
sentence. Your statement may use any first-order construct (equality, connectives, quantifiers, etc.), but
you must only use the predicates, functions, and constants provided.

As an example, if you were given just the predicates Integer(x), which states that x is an integer, and
the function Plus(x, y), which represents the sum of x and y, you could write the statement “there is
some even integer” as

n. k. (Integer(n) Integer(k) Plus(k, k) = n)∃ ∃ ∧ ∧

since this asserts that some integer n is equal to 2k for some integer k. However, you could not write

n. (Integer(n) Even(n))∃ ∧

because there is no Even predicate. Similarly, you could not write

∃n . ∈ ℤ ∃k . ∈ ℤ Plus(k, k) = n

Because there is no predicate and no constant symbol . The point of this question is to get you to∈ ℤ
think how to express certain concepts in first-order logic given a limited set of predicates, so feel free
to write any formula you'd like as long as you don't invent your own predicates, functions, or constants.

i. Given the predicate

Fools(x, y, t), which states that x fools y at time t,
Person(x), which states that x is a person, and
Time(t), which states that t is a time,

along with the constant you, write a statement in first-order logic that says “you can fool some
of the people all of the time and all of the people some of the time, but not all of the people all
of the time.” That is, there is a time where you can fool everyone, and there is a person that you
can always fool, but you cannot always fool every person.

ii. Given the predicate

 Integer(x), which states that x is an integer,

the function

 Product(x, y), which yields the product of x and y,

and the constant symbols -1, 0, 1, and 2, write a statement in first-order logic that says “ √2 is
irrational.” For this problem, assume that the definition of a rational number means that p and
q must not have any factors in common other than 1 and -1.

Problem One: The Epimenides Paradox (12 points)

In logic, we assume that every statement is either true or false. However, some statements called
logical paradoxes break this rule and can be neither true or false. For example, the statement “this
statement is false” is a paradox – if it were true, it would have to be false, and if it were false, it would
have to be true. The statement is therefore a paradox – it must be either true or false, but it can be
neither true nor false.

One of the earliest paradoxes is the called the Epimenides Paradox, which is stated as follows:

Epimenides, a Cretan, says “All Cretans always lie.”

According to the ancient Greeks, this statement is a paradox because Epimenides can neither tell the
truth nor lie. A sketch of the argument is as follows:

“If Epimenides tells the truth, then all Cretans always lie. Since Epimenides is himself a
Cretan, then he must be lying, which is impossible because we know that Epimenides is
telling the truth. Thus it is not possible for Epimenides to be telling the truth.

If, on the other hand, Epimenides is lying, then his statement is false and all Cretans
never lie. Since Epimenides himself is a Cretan, then he must be telling the truth, which
is impossible because we know that he was lying. Thus it is not possible for Epimenides
to be lying.

Thus Epimenides must be neither lying nor telling the truth – a paradox!”

However, there is a flaw in the above line of reasoning, and despite its name the Epimenides Paradox is
not a paradox.

Identify the flaw in this reasoning. Since this is not really a paradox, Epimenides must either be lying
or telling the truth. Is Epimenides lying or telling the truth? If he's telling the truth, why doesn't his
statement contradict itself? If he's lying, why doesn't his statement contradict itself? Justify your an-
swer.

Problem Two: Propositional Negations (16 points)

For each of the following propositional logic statements, find another statement that is the negation of
the given statement. The statement you choose should only have ¬ directly applied to propositions.
For example, to get the contradiction of the statement

p → q → r

you might use the following line of reasoning:

¬(p → q → r)

p ¬(q → r)∧

p q ¬r∧ ∧

Once you have found your negation, prove that is is correct by constructing a truth table for the
negation of the original statement and showing it is equal to the truth table for your resulting statement.
For the above case, we would construct truth tables for ¬(p → q → r) and p ∧ q ∧ ¬r as follows:

p q r ¬(p → q → r) p q r p q ¬r∧ ∧

F F F F F T F T F F F F F F F F T F

F F T F F T F T T F F T F F F F F T

F T F F F T T F F F T F F F T T T F

F T T F F T T T T F T T F F T F F T

T F F F T T F T F T F F T F F F T F

T F T F T T F T T T F T T F F F F T

T T F T T F T F F T T F T T T T T F

T T T F T T T T T T T T T F T F F T

Since these truth tables have the same truth values, the formulas are equivalent. The truth tables above
are very detailed and you don't need to provide this level of detail in yours. However, you should at
least specify the truth value of each connective.

i. p ↔ q

ii. r (¬p q)∨ ∧

iii. ¬(p → q) → (p → ¬q)

Problem Three: Sufficient Connectives (20 Points)

As we saw in lecture, some propositional connectives can be written in terms of other connectives. For
example, p → q is equivalent to ¬p ∨ q, so it's possible to rewrite all formulas in propositional logic
without ever using → by replacing all instances of φ → ψ with ¬φ ψ.∨

This shows that it's possible to drop down from our seven initial quantifiers to just six (¬, , , ↔, ,∧ ∨ ⊤
and) without losing any expressive power – any propositional formula that can be written with the⊥
initial seven quantifiers can be rewritten using just six of them. Is it possible to drop down to an even
smaller number? Could we get by with just five quantifiers? Or four? Or even fewer? In this
problem, we will explore the following question:

How many logical connectives are necessary to express all propositional formulas?

It turns out that we can drop down from the six connectives ¬, , , ↔, , and to a set of just five,∧ ∨ ⊤ ⊥
since the ↔ operator can be replaced by expressions involving just ¬, , , , and .∧ ∨ ⊤ ⊥

i. Find a formula that is logically equivalent to p ↔ q that only uses the connectives ¬, , , ,∧ ∨ ⊤
and . Do not introduce any new propositional variables. Prove that your formula is logically⊥
equivalent to p ↔ q by showing that its truth table is the same as the truth table for p ↔ q.

ii. Find a formula that is logically equivalent to that uses only the connectives ¬, , and . You⊤ ∧ ∨
may introduce other propositional variables if you would like. Prove that your formula is
equivalent to by showing that its truth table always evaluates to .⊤ ⊤

Given that you now have a new formula for , you can easily obtain one for by just negating the⊤ ⊥
formula for . As a result, at this point you've eliminated all connectives except for ¬, , and . But⊤ ∧ ∨
why stop there? Let's see just how much redundancy there is.

iii. Find a formula that is logically equivalent to p ∨ q that uses just ¬ and . Do not introduce any∧
new propositional variables. Prove that your formula is equivalent to p ∨ q by showing that its
truth table is the same as the truth table for p ∨ q.

We are now down to just ¬ and , and it might seem like we can't go any further. However, it's∧
possible to replace these two connectives with just one connective. The nor connective, denoted p ↓ q,
has the following truth table:

p q p ↓ q

F F T

F T F

T F F

T T F
Notice that the truth table for p ↓ q is the same as the truth table for ¬(p q)∨ , hence the name “nor” (as
in “neither p nor q”)

iv. Find a formula logically equivalent to ¬p that uses just ↓. Do not introduce any new
propositional variables. Prove that your formula is equivalent to ¬p by showing that its truth
table is identical to the truth table for ¬p.

v. Find a formula logically equivalent to p q∧ that uses just ↓. Do not introduce any new
propositional variables. Prove that your formula is equivalent to p q∧ by showing that its truth
table is identical to the truth table for p q∧ .

You have just shown that every propositional logic formula can be written purely in terms of ↓, since
you can

• Eliminate ↔, →, , and by converting to ¬, , and ,⊤ ⊥ ∧ ∨

• Eliminate by converting to ¬ and , and∨ ∧

• Eliminate ¬ and by converting to ↓.∧

Because ↓ is powerful enough to derive the rest of the connectives, it is sometimes referred to as a sole
sufficient operator.

Problem Four: Translating into Logic, Part II (28 points)

In each of the following, you will be given a list of first-order predicates and functions along with an
English sentence. In each case, write a statement in first-order logic that expresses the indicated
sentence. Your statement may use any first-order construct (equality, connectives, quantifiers, etc.), but
you must only use the predicates, functions, and constants provided. Refer to the checkpoint problem
for more detailed instructions.

i. Given the predicate

Natural(x), which states that x is an natural number,

 the function

Product(x, y), which yields the product of x and y,

and the constants 1 and 137, write a statement in first-order logic that says “137 is prime.”

ii. Given the predicates

Word(x), which states that x is a word,
Definition(x), which states that x is a definition, and
Means(x, y), which states that x means y,

write a statement in first-order logic that says “some words have exactly two meanings.”

iii. Given the predicates

x ∈ y, which states that x is an element of y, and
Set(S), which states that S is a set,

write a statement in first-order logic that says “every set has a power set.”

iv. Given the predicates

Lady(x), which states that x is a lady,
Glitters(x), which states that x glitters,
IsSureIsGold(x, y), which states that x is sure that y is gold,
Buying(x, y), which states that x buys y,
StairwayToHeaven(x), which states that x is a Stairway to Heaven,

write a statement in first-order logic that says “There's a lady who's sure all that glitters is gold,
and she's buying a Stairway to Heaven.”*

Problem Five: First-Order Negations (16 points)

Proof by contradiction can be difficult because it is often tricky to determine what the negation of the
theorem is. In this problem, you'll use first-order logic to explicitly determine the negation of
statements in first-order logic.

For each of the first-order logic formulas below, find a first-order logic formula that is the negation of
the original statement. Your final formula must not have any negations in it, except for direct negations
of predicates. For example, the negation of

x. (p(x) → y. (q(x) r(y)))∀ ∃ ∧

would be found by pushing the negation in from the outside as follows:

¬(x. (p(x) → y. (q(x) r(y))))∀ ∃ ∧

x. ¬(p(x) → y. (q(x) r(y)))∃ ∃ ∧

x. (p(x) ¬ y. (q(x) r(y))∃ ∧ ∃ ∧

x. (p(x) y. ¬(q(x) r(y)))∃ ∧ ∀ ∧

x. (p(x) y. (q(x) → ¬r(y)))∃ ∧ ∀

You must show every step of the process of pushing the negation into the formula (along the lines of
what is done above), but you do not need to formally prove that your result is correct.

i. x. (p(x) → y. q(x, y))∀ ∃

ii. (x. y. z. (R(x, y) R(y, z) → R(x, z))) → (x. y. z. (R(y, x) R(z, y) → R(z, x)))∀ ∀ ∀ ∧ ∀ ∀ ∀ ∧

iii. n ∀ ∈ℕ. (n ≥ 6 → x ∃ ∈ℕ. y ∃ ∈ℕ. 3x + 4y = n)

* Let's face it – the lyrics to Led Zeppelin's “Stairway to Heaven” are impossible to decipher. Hopefully we can gain
some insight by translating them into first-order logic!

Problem Six: SAT Solving Algorithms (28 Points)

Suppose that you are handed a “black-box” SAT-solving algorithm – that is, a device that takes in a
propositional logic formula φ and returns whether or not φ is satisfiable. You don't know anything
about the workings of this algorithm – perhaps it converts the formula to CNF and uses DPLL, or
perhaps it constructs a truth table – but you are assured that given a formula φ it returns whether or not
φ is satisfiable. Let's denote this algorithm A, so A(φ) is true iff φ is satisfiable.

This question asks what else you can do with a SAT solver.

i. Create an algorithm that uses A as a subroutine to determine whether φ is a tautology. Prove
that your algorithm is correct. Do not just list all possible assignments and check each
individually; leverage off of algorithm A to get an answer directly.

ii. Suppose that you have two propositional formulas φ and ψ. You are interested in determining
whether φ ≡ ψ; that is, whether φ and ψ always have the same truth values. Create an algorithm
that uses A as a subroutine to answer this question, and prove that your algorithm is correct. Do
not just list all possible assignments and check each individually; leverage off of algorithm A to
get an answer directly.

iii. Suppose that you have a propositional formula φ with n variables that you know is satisfiable.
Create an algorithm that uses A as a subroutine to obtain a satisfying assignment for φ using at
most n calls to A. Prove that your answer is correct.

Problem Seven: Course Feedback (5 Points)

We want this course to be as good as it can be, and we'd really appreciate your feedback on how we're
doing. For a free five points, please answer the following questions. We'll give you full credit no
matter what you write (as long as you write something!), but we'd appreciate it if you're honest about
how we're doing.

i. How hard did you find this problem set? How long did it take you to finish? Does that seem
unreasonably difficult or time-consuming for a five-unit class?

ii. Did you attend Monday's problem session? If so, did you find it useful?

iii. How is the pace of this course so far? Too slow? Too fast? Just right?

iv. Is there anything in particular we could do better? Is there anything in particular that you think
we're doing well?

Submission instructions

There are three ways to submit this assignment:

1. Hand in a physical copy of your answers at the start of class. This is probably the easiest way
to submit if you are on campus.

2. Submit a physical copy of your answers in the filing cabinet in the open space near the handout
hangout in the Gates building. If you haven't been there before, it's right inside the entrance
labeled “Stanford Engineering Venture Fund Laboratories.” There will be a clearly-labeled
filing cabinet where you can submit your solutions.

3. Send an email with an electronic copy of your answers to the submission mailing list
(cs103-aut1213-submissions@lists.stanford.edu) with the string “[PS4]” in the subject line.

Extra Credit Problem: Insufficient Connectives (5 Points Extra Credit)

In Problem Three, you proved that the ¬ and connectives are sufficient to express all propositional∧
logic formulas with at least one variable.

Prove that there exists a propositional logic formula φ containing at least one variable that cannot be
rewritten as a formula using just the connectives ¬ and ↔.

mailto:cs103-aut1213-submissions@lists.stanford.edu

